
.sun~
" microsystems

UNIX Interface Overview

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Credits and Acknowledgements
This manual is derived directly from the System Interface Overview from the 4.2BSD documentation.

Trademarks
Multibus is a trademark of Intel Corporation.

Sun Workstation is a trademark of Sun Microsystems Incorporated.

UNIX is a trademark of Bell Laboratories.

Copyright © 1983, 1984, 1985, 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica­
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written permission from Sun Microsystems.

-ii-

Contents

Preface .. vii

Chapter 1 Introduction .. 3

1.1. Notation and TYJ>es .. 4

Chapter 2 Processes and Protection .. 7

2.1. Host and Process Identifiers .. 7

2.2. Creating and Terminating Processes .. 8

2.3. User and Group Ids ... 8

2.4. Process Groups and System Terminals ... 9

Chapter 3 Memory Management .. 13

3.1. Text, Data, and Stack .. 13

3.2. Mapping Pages .. 13

Chapter 4 Signals .. 17

4.1. Signal TYJ>es ... 17

4.2. Signal Handlers ... 18

4.3. Sending Signals .. 19

4.4. Protecting Critical Sections ... 19

4.5. Signal Stacks .. 19

Chapter 5 Timers ... 23

5.1. Real Time ... 23

5.2. Interval Time .. 24

- iii-

Contents Continued

Chapter 6 Descriptors .. 27

6.1. The Reference Table .. 27

6.2. Descriptor Properties ... 27

6.3. Managing Descriptor References ... 27

6.4. Multiplexing Requests .. 28

Chapter 7 Resource Controls ... 33

7.1. Process Priorities .. 33

7.2. Resource Utilization .. 33

7.3. Resource Limits .. 34

Chapter 8 System Operation Support .. 37

8.1. Bootstrap Operations ... 37

8.2. Shutdown Operations .. 37

8.3. Accounting .. 38

Chapter 9 Generic Operations ... 41

9.1. Read and Write ... 41

9.2. Input/Output Control ... 42

9.3. Non-Blocking and Asynchronous Operations ... 42

Chapter 10 File System .. 45

10.1. Naming ... 45

10.2. Creation and Removal.. 46

Directory Creation and Removal ... 46

File Creation .. 46

Creating References to Devices .. 46

File and Device Removal ... 47

10.3. Reading and Modifying File Attributes ... 47

10.4. Links and Renaming ... 49

10.5. Extension and Truncation .. 49

10.6. Checking Accessibility .. 50

10.7. Locking ... 50

10.8. Disk Quotas .. 51

-iv-

Contents Continued

Chapter 11 Interprocess Communications ... 55

11.1. Interprocess Communication Primitives ... 55

Communication Domains .. 55

Socket Types and Protocols .. 55

Socket Creation, Naming, and Service Establishment 56

Accepting Connections .. 56

Making Connections ... 57

Sending and Receiving Data .. 57

Scatter/Gather and Exchanging Access Rights .. 58

Using Read and Write with Sockets .. 59

Shutting Down Halves of Full-Duplex Connections 59

Socket and Protocol Options .. 59

11.2. UNIX Domain .. 59

Types of Sockets ... 59

Naming ... 60

Access Rights Transmission ... 60

11.3. INTERNET Domain ... 60

Socket Types and Protocols .. 60

Socket Naming ... 60

Access Rights Transmission ... 60

Raw Access .. 60

Chapter 12 Devices ... 63

12.1. Structured Devices ... 63

12.2. Unstructured Devices ... 63

Chapter 13 Debugging Support ... 67

13.1. ptrace -Process Tracing .. 67

Appendix A Summary of Facilities ... 73

A.l. Kernel Primitives .. 73

Process Naming and Protection .. 73

Memory Management .. 73

-v-

Contents Continued

Signals ... 73

Timing and Statistics .. 74

Descriptors .. 74

Resource Controls .. 74

System Operation Support ... 74

A.2. System Facilities ... 74

Generic Operations .. 74

File System ... 75

Interprocess Communications ... 75

Debugging Support .. 76

-vi-

Preface

This document summarizes the facilities provided by the 1.1, 2.0, 3.0, and later
releases of the UNIXt operating system for the Sun Workstation. It does not
attempt to act as a tutorial for use of the system nor does it attempt to explain or
justify the design of the system facilities. It gives neither motivation nor imple­
mentation details, in favor of brevity. Discussions of system facilities in this
document is in two major parts:

Part I describes the basic kernel functions provided to a UNIX process: pro­
cess naming and protection in chapter 2, memory management in
chapter 3, software interrupts in chapter 4, object references (descrip­
tors) in chapter 6, time and statistics functions in chapter 5, and
resource controls in chapter 7. These facilities, as well as facilities for
bootstrap, shutdown and process accounting described in 8, are pro­
vided solely by the kernel.

Part II describes the standard system abstractions for files and file systems in
chapter 9, 10 and 12, communication and terminal handling in chapter
11, and process control and debugging in chapter 13. These facilities
are implemented by the operating system or by network server
processes.

Appendix A provides a quick-reference list of facilities.

t UNIX is a trademark of AT&T Bell Laboratories.

-vii-

1
Introduction

Introduction ... 3

1.1. Notation and Types .. 4

1
Introduction

Facilities available to a UNIX user process are logically divided into two parts:
kernel facilities directly implemented by UNIX code running in the operating sys­
tem, and system facilities implemented either by the system, or in cooperation
with a server process.

Facilities implemented in the kernel are those which define the UNIX virtual
machine which each process runs in. Like many real machines, this virtual
machine has memory management hardware, an interrupt facility, timers and
counters. The UNIX virtual machine also allows access to files and other objects
through a set of descriptors. Each descriptor resembles a device controller, and
supports a set of operations. Like devices on real machines, some of which are
internal to the machine and some of which are external, parts of the descriptor
machinery are built-in to the operating system, while other parts are often imple­
mented in server processes on other machines.

System abstractions described are:

Directory Contexts
A directory context is a position in the UNIX file system name space. Opera­
tions on files and other named objects in a file system are always specified
relative to such a context.

Files
Files are used to store uninterpreted sequence of bytes on which random
access reads and writes may occur. Pages from files or devices may also be
mapped into process address space. A directory may be read as a file 1.

Communications Domains
A communications domain represents an interprocess communications
environment, such as the communications facilities of the UNIX system,
communications in the INTERNEf, or the resource sharing protocols and
access rights of a resource sharing system on a local network.

Sockets
A socket is an endpoint of communication and the focal point for IPC in a
communications domain. Sockets may be created in pairs, or given names
and used to rendezvous with other sockets in a communications domain,

1 Support for mapping files is not included in this release.

3 A of 15 February 1986

4 System Interface Overview

1.1. Notation and Types

accepting connections from these sockets or exchanging messages with
them. These operations model a labeled or unlabeled communications
graph, and can be used in a wide variety of communications domains. Sock­
ets can have different types to provide different semantics of communica­
tion, increasing the flexibility of the model.

Terminals and other devices
Devices include tenninals, providing input editing and interrupt generation
and output flow control and editing, magnetic tapes, disks and other peri­
pherals. They often support the generic read and write operations as well as
a number of ioctl s.

Processes
Process descriptors provide facilities for control and debugging of other
processes.

The notation used to describe system calls is a variant of a C language call, con­
sisting of a prototype call followed by declaration of parameters and results. An
additional keyword resul t, not part of the normal C language, is used to indi­
cate which of the declared entities receive results. As an example, consider the
read call, as described in section 9.1.

cc = read(fd, buf, nbytes);
result int cc; int fd; result char *buf; int nbytes;

The first line shows how the read routine is called, with three parameters. As
shown on the second line cc is an integer and read also returns infonnation in
the parameter bu f.

Description of all error conditions arising from each system call is not provided
here; they appear in the intro (2) manual page of the System Interface Manual.
All error codes also appear in the index to the System Interface Manual. In par­
ticular, when accessed from the C language, many calls return a characteristic -1
value when an error occurs, returning the error code in the global variable
errno. Since some calls return -1 as a legitimate value, you may have to check
errno to detennine if the return value is genuine or an error. Other languages
may present errors in different ways.

A number of system standard types are defined in the < s y s / type s . h> include
file and llsed in the specifications here and in many C programs. These include
caddr _ t giving a memory address (typically as a character pointer), off _ t
giving a file offset (typically as a long integer), and a set of unsigned types
u_char, u_short, u_int and u_long, shorthand names for unsigned
char, unsigned short, and so on.

A of 15 February 1986

2
Processes and Protection

Processes and Protection ... 7

2.1. Host and Process Identifiers .. 7

2.2. Creating and Terminating Processes .. 8

2.3. User and Group Ids ... 8

2.4. Process Groups and System Terminals ... 9

2.1. Host and Process
Identifiers

2
Processes and Protection

Each UNIX host has associated with it a 32-bit host id, and a host name of up to
255 characters. These are set (by a privileged user) and returned by the calls:

getdomainname(name, namelength);
char *name;
int namelength;

setdomainname(name, namelength);
char *name;
int namelength;

hostid = gethostid();
result long hostid;

sethostname(name, len);
char *name; int len;

gethostname(buf, buflen);
result char *buf; int buflen;

getdomainname returns the name of the domain for the current processor.
setdomainname sets the domain of the current processor to name.

The host id is not used in this release of the system. The buf containing the host
name returned by get host name is null-terminated (if space allows).

On each host runs a set of processes. Each process is largely independent of
other processes, having its own protection domain, address space, timers, and an
independent set of references to system or user implemented objects.

Each process in a host is named by an integer called the process ide This number
is in the range 1-30000 and is returned by the getpid routine:

pid = getpid();
result int pid;

On each UNIX host this identifier is guaranteed to be unique; in a multi-host
environment, the (hostid, process id) pairs are guaranteed unique.

7 A of 15 February 1986

8 System Interface Overview

2.2. Creating and
Terminating Processes

2.3. User and Group Ids

A new process is created by making a logical duplicate of an existing process:

pid = fork () ;
result int pid;

The fork call returns twice, once in the parent process, where pid is the process
identifier of the child, and once in the child process where pid is O. The parent­
child relationship induces a hierarchical structure on the set of processes in the
system.

A process may terminate by executing an exit call:

exit(status);
int status;

returning 8 bits of exit status to its parent.

When a child process exits or terminates abnormally, the parent process receives
information about any event which caused termination of the child process. A
second call provides a non-blocking interface and may also be used to retrieve
information about resources consumed by the process during its lifetime.

finclude <sys/wait.h>

pid = wait(astatus);
result int pid; result union wait *astatus;

pid = wait3(astatus, options, arusage);
result int pid; result union waitstatus *astatus;
int options; result struct rusage *arusage;

A process can overlay itself with the memory image of another process, passing
the newly created process a set of parameters, using the call:

execve(name, argv, envp)
char *name, **argv, **envp;

The specified name must be a file which is in a format recognized by the system,
either a binary executable file or a file which causes the execution of a specified
interpreter program to process its contents.

Each process in the system has associated with it two user-id's: a real user id and
a effective user id, both non-negative 16 bit integers. Each process has an real
accounting group id and an effective accounting group id and a set of access
group id's. The group id's are non-negative 16 bit integers. Each process may
be in several different access groups, with the maximum concurrent number of
access groups a system compilation parameter, the constant NGROUP S in the file
<sys/param.h>, guaranteed to be at least 8.

The real and effective user ids associated with a process are returned by:

A of 15 February 1986

2.4. Process Groups and
System Terminals

Chapter 2 - Processes and Protection 9

ruid = getuid();
result int ruid;

euid = geteuid();
result int euid;

the real and effective accounting group ids by:

rgid = getgid();
result int rgid;

egid = getegid();
result int egid;

and the access group id set is returned by a getgroups call:

ngroups = getgroups(gidsetsize, gidset);
result int ngroups;
int gidsetsize;
result int gidset[gidsetsize]i

The user and group id's are assigned at login time using the setreuid,
setregid, and setgroups calls:

setreuid(ruid, euid)i
int ruid, euidi

setregid(rgid, egid);
int rgid, egid;

setgroups(gidsetsize, gidset);
int gidsetsize; int gidset[gidsetsize];

The setreuid call sets both the real and effective user-id's, while the setre­
gid call sets both the real and effective accounting group id's. Unless the caller
is the super-user, ruid must be equal to either the current real or effective user-id,
and rgid equal to either the current real or effective accounting group id. The
setgroups call is restricted to the super-user.

Each process in the system is also normally associated with a process group.
The group of processes in a process group is sometimes referred to as ajob and
manipulated by high-level system software (such as the shell). The current pro­
cess group of a process is returned by the getpgrp call:

pgrp = getpgrp(pid);
result int pgrpi int pid;

The process group associated with a process may be changed by the set pgrp
call:

setpgrp(pid, pgrp);
int pid, pgrp;

Newly created processes are assigned process id's distinct from all processes and
process groups, and the same process group as their parent. A normal

A of 15 February 1986

10 System Interface Overview

Control Terminal

(unprivileged) process may set its process group equal to its process ide A
privileged process may set the process group of any process to any value.

When a process is in a specific process group it may receive software interrupts
affecting the group, causing the group to suspend or resume execution or to be
interrupted or terminated. In particular, every system terminal has a process
group and only processes which are in the process group of a terminal may read
from the terminal, allowing arbitration of terminals among several different jobs.
A process can examine the process group of a terminal via the ioctl call:

ioctl(fd, TIOCGPGRP, pgrp); _­
int fd; result int *pgrp;

A process may change the process group of any tenninal which it can write by
the ioctl call:

ioctl(fd, TIOCSPGRP, pgrp);
int fd; int *pgrp;

The terminal's process group may be set to any value. Thus, more than one ter­
minal may be in a process group.

Each process in the system is usually associated with a control terminal, accessi­
ble through the file /dev/tty. A newly created process inherits the control termi­
nal of its parent. A process may be in a different process group than its control
terminal, in which case the process does not receive software interrupts affecting
the control terminal's process group.

You can arrange for a process to be detached from the control terminal, via this
code sequence:

if «i = open (If/dev/ttylf) , O_RDONLY) >= 0)
(void)ioctl(i, TIOCNOTTY, (char *)0);

A of 15 February 1986

3
Memory Management

Memory Management ... 13

3.1. Text, Data, and Stack .. 13

3.2. Mapping Pages .. 13

3.1. Text, Data, and Stack

3.2. Mapping Pages

3
Memory Management

This section represents the interface planned for later releases of the system. Of
the calls described in this section, only sbrk, getpagesize, and mmap are
included in the current release. Note that mmap is restricted in that it only works
with certain character devices such as the framebuffer and devices like mbmem.

Each process begins execution with three logical areas of memory called text,
data and stack. The text area is read-only and shared, while the data and stack
areas are private to the process. Both the data and stack areas may be extended
and contracted on program request. The call

addr = sbrk(incr);
result caddr_t addr; int incr;

changes the size of the data area by incr bytes and returns the new end of the data
area. The stack area is automatically extended as needed.

On the Sun system, the program text and data are at the low end of the address
space, and the stack is at the high end of the address space. The area between the
two is not accessible. The stack expands as necessary to accommodate the
process's stack usage. The data area can be expanded by explicit system calls.
The data area is usually called the 'heap'.

On the VAX the text and data areas are adjacent in the PO region, while the stack
section is in the PI region, and grows downward.

The system supports sharing of data between processes by allowing pages to be
mapped into memory. These mapped pages may be shared with other processes
or private to the process. Protection and sharing options are defined in
<mman.h> as:

/* protections are chosen from these bits, or-ed together */
define PROT READ Ox4 / pages can be read */
define PROT WRITE Ox2 / pages can be written */
define PROT EXEC Oxl / pages can be executed */

/* sharing types; choose either SHARED or PRIVATE */
define MAP SHARED 1 / share changes */
define MAP PRIVATE 2 / changes are private */

The cpu-dependent size of a page is returned by the getpagesize system call:

13 A of 15 February 1986

14 System Interface Overview

NOTE

pagesize getpagesize();
result int pagesize;

The call:

mmap(addr, len, prot, share, fd, pos);
caddr_t addr; int len, prot, share, fd; off_t pos;

maps the pages starting at addr and continuing for len bytes from the object
represented by descriptorfd, at absolute positionpos. The parameter share
specifies whether modifications made to this mapped copy of the page, are to be
kept private, or are to be shared with other references. The parameter prot
specifies the accessibility of the mapped pages. The addr, len, and pos parame­
ters must all be multiples of the pagesize.

A mapping can be removed by the call

munmap(addr, len);
caddr_t addr; int len;

Further references to these pages will refer to private pages initialized to zero.

mmap andmunmap are not implemented in 4.2 BSD. They are implemented in
the Sun system, but in a limited way - they are used for mapping frame buffers
into a process's address space.

A of 15 February 1986

4
Signals

Signals ... 17

4.1. Signal Types ... 17

4.2. Signal Handlers ... 18

4.3. Sending Signals .. 19

4.4. Protecting Critical Sections ... 19

4.5. Signal Stacks .. 19

4.1. Signal Types

4

Signals

The system defines a set of signals that may be delivered to a process. Signal
delivery resembles the occurrence of a hardware interrupt: the signal is blocked
from further occurrence, the current process context is saved, and a new one is
built. A process may specify the handler to which a signal is delivered, or
specify that the signal is to be blocked or ignored. A process may also specify
that a default action is to be taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may be
accompanied by creation of a core image file, containing the current memory
image of the process for use in post-mortem debugging. A process may choose
to have signals delivered on a special stack, so that sophisticated software stack
manipulations are possible.

All signals have the same priority. If multiple signals are pending simultane­
ously, the order in which they are delivered to a process is implementation
specific. Signal routines execute with the signal that caused their invocation
blocked, but other signals may yet occur. Mechanisms are provided whereby
critical sections of code may protect themselves against the occurrence of
specified signals.

The signals defined by the system fall into one of five classes: hardware condi­
tions, software conditions, input/output notification, process control, or resource
control. The set of signals is defined in the file <signal. h>.

Hardware signals are derived from exceptional conditions which may occur dur­
ing execution. Such signals include S IGFPE representing floating point and
other arithmetic exceptions, S IG ILL for illegal instruction execution, S IGSEGV
for addresses outside the currently assigned area of memory, and SIGBUS for
accesses that violate memory protection constraints. Other, more cpu-specific
hardware signals exist, such as those for the various customer-reserved instruc­
tions on the VAX (SIGIOT, SIGEMT, and SIGTRAP).

Software signals reflect interrupts generated by user request: S I G INT for the
normal interrupt signal; SIGQUIT for the more powerful quit signal, that nor­
mally causes a core image to be generated; SIGHUP and SIGTERM that cause
graceful process termination, either because a user has' 'hung up" , or by user or
program request; and S IGKILL, a more powerful termination signal which a
process cannot catch or ignore. Other software signals (SIGALRM,
S I GVTALRM, S IGPROF) indicate the expiration of interval timers.

17 A of 15 February 1986

18 System Interface Overview

4.2. Signal Handlers

A process can request notification via a S I G 10 signal when input or output is
possible on a descriptor, or when a non-blocking operation completes. A process
may request to receive a S IGURG signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process
group. The SIGSTOP signal is a powerful stop signal, because it cannot be
caught. Other stop signals SIGTSTP, SIGTTIN, and SIGTTOU are used when
a user request, input request, or output request respectively is the reason the pro­
cess is being stopped. A SIGCONT signal is sent to a process when it is contin­
ued from a stopped state. Processes may receive notification with a SIGCHLD
signal when a child process changes state, either by stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs
when a process nears its CPU time limit and SIGXFSZ warns that the limit on
file size creation has been reached.

A process has a handler associated with each signal that controls the way the sig­
nal is delivered The call

linclude <signal.h>

struct sigvec {

} ;

int (*sv_handler) ();
int sv_mask;
int sv_onstack;

sigvec(signo, sv, osv)
int signo; struct sigvec *sv; result struct sigvec *osv;

assigns interrupt handler address sv _handler to signal signo. Each handler
address specifies either an interrupt routine for the signal, that the signal is to be
ignored, or that a default action (usually process termination) is to occur if the
signal occurs. The constants SIG_IGN and SIG_DFL used as values for
sv _handler cause ignoring or defaulting of a condition. The sv _ mask and
sv _ onstack values specify the signal mask to be used when the handler is invoked
and whether the handler should operate on the normal run-time stack or a special
signal stack (see below). If osv is non-zero, the previous signal vector is
returned.

When a signal condition arises for a process, the signal is added to a set of sig­
nals pending for the process. If the signal is not currently blocked by the process
then it will be delivered. The process of signal delivery adds the signal to be
delivered and those signals specified in the associated signal handler's sv _mask
to a set of those masked for the process, saves the current process context, and
places the process in the context of the signal handling routine. The call is
arranged so that if the signal handling routine exits normally the signal mask will
be restored and the process will resume execution in the original context. If the
process wishes to resume in a different context, then it must arrange to restore the
signal mask itself.

The mask of blocked signals is independent of handlers for signals. It prevents
signals from being delivered much as a raised hardware interrupt priority level

A of 15 February 1986

4.3. Sending Signals

4.4. Protecting Critical
Sections

4.5. Signal Stacks

Chapter 4 - Signals 19

prevents hardware interrupts. Preventing an interrupt from occurring by chang­
ing the handler is analogous to disabling a device from further interrupts.

The signal handling routine sv _ handler is called by a C call of the form

(*sv_handler) (signo, code, scp);
int signo; long code; struct sigcontext *scp;

The signo gives the number of the signal that occurred, and the code, a word of
information supplied by the hardware. The scp parameter is a pointer to a
machine-dependent structure containing the information for restoring the context
before the signal.

A process can send a signal to another process or group of processes with the
calls:

kill (pid, signo);
int pid, signo;

killpgrp(pgrp, signo);
int pgrp, signo;

Unless the process sending the signal is privileged, it and the process receiving
the signal must have the same effective user ide

Signals are also sent implicitly from a terminal device to the process group asso­
ciated with the terminal when certain input characters are typed.

To block a section of code against one or more signals, a sigblock call may be
used to add a set of signals to the existing mask, returning the old mask:

oldmask = sigblock(mask);
result long oldrnask; long mask;

The old mask can then be restored later with sigsetmask ,

oldmask = sigsetmask(mask);
result long oldrnask; long mask;

The sigblock call can be used to read the current mask by specifying an empty
mask.

It is possible to check conditions with some signals blocked, and then to pause
waiting for a signal and restoring the mask, by using:

sigpause(mask) ;
long mask;

Applications that maintain complex or fixed size stacks can use the call

A of 15 February 1986

20 System Interface Overview

struct sigstack {
caddr_t ss_sp;
int ss_onstack;

} ;

sigstack(ss, oss)
struct sigstack *ss; result struct sigstack *oss;

to provide the system with a stack based at ss _sp for delivery of signals. The
value ss _ onstack indicates whether the process is currently on the signal stack, a
notion maintained in software by the system.

When a signal is to be delivered, the system checks whether the process is on a
signal stack. If not, then the process is switched to the signal stack for delivery ,
with the return from the signal arranged to restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run code
from the signal stack that uses a different stack, a sigstack call should be used to
reset the signal stack.

A of 15 February 1986

5
Timers

Timers ... 23

5.1. Real Time ... 23

5.2. Interval Time .. 24

5.1. Real Time

5
Timers

The system's notion of the current Greenwich time and the current time zone is
set and returned by the calls:

#include <sys/time.h>

settimeofday(tvp, tzp);
struct timeval *tp;
struct timezone *tzp;

gettimeofday(tp, tzp);
result struct timeval *tp;
result struct timezone *tzp;

where the structures are defined in <sys/time. h> as:

struct timeval {
long tv_sec; /* seconds since Jan 1, 1970 */
long tv_usec; /* and microseconds */

} ;

struct timezone {
int tz minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply */

} ;

Earlier versions of UNIX contained only a I-second resolution version of this
call, which remains as a library routine:

or

time (tvp)
result long *tvp;

tv = time«long *)0);
result long tv;

returning only the tv_sec field from the gettimeofday call.

23 A of 15 February 1986

24 System Interface Overview

5.2. Interval Time The system provides each process with three interval timers, defined in
<sys/time. h>:

fdefine ITIMER REAL 0
fdefine ITIMER VIRTUAL
fdefine ITIMER PROF 2

/* real time intervals */
1 /* virtual time intervals */
/* user and system virtual time */

The ITIMER_REAL timer decrements in real time. It could be used by a library
routine to maintain a wakeup service queue. A SIGALRM signal is delivered
when this timer expires.

The ITIMER _VIRTUAL timer decrements in process virtual time. It runs only
when the process is executing. A SIGVTALRM signal is delivered when it
expires.

The ITIMER _PROF timer decrements both in process virtual time and when the
system is running on behalf of the process. It is designed to be used by processes
to statistically profile their execution. A SIGPROF signal is delivered when it
expires.

A timer value is defined by the it imerva 1 structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

} ;

and a timer is set or read by the call:

getitimer(which, value);
int which; result struct itimerval *value;

setitimer(which, value, ovalue);
int which; struct itimerval *value;
result struct itimerval *ovalue;

The third argument to seti timer specifies an optional structure to receive the
previous contents of the interval timer. A timer can be disabled by specifying a
timer value of O.

The system rounds argument timer intervals to be not less than the resolution of
its clock. This clock resolution can be determined by loading a very small value
into a timer and reading the timer back to see what value resulted.

The alarm system call of earlier versions of UNIX is provided as a library rou­
tine using the ITIMER _REAL timer. The process profiling facilities of earlier
versions of UNIX remain because it is not always possible to guarantee the
automatic restart of system calls after receipt of a signal.

profil(buf, bufsize, offset, scale);
result char *buf; int bufsize, offset, scale;

.\sun ~~ microsyst9ms
A of 15 February 1986

6
Descriptors

Descriptors ... 27

6.1. The Reference Table .. 27

6.2. Descriptor Properties ... 27

6.3. Managing Descriptor References ... 27

6.4. Multiplexing Requests .. 28

6.1. The Reference Table

6.2. Descriptor Properties

6.3. Managing Descriptor
References

6

Descriptors

Each process has access to resources through descriptors. Each descriptor is a
handle allowing the process to reference objects such as files, devices and com­
munications links.

Rather than allowing processes direct access to descriptors, the system introduces
a level of indirection, so that descriptors may be shared between processes. Each
process has a descriptor reference table, containing pointers to the actual
descriptors. The descriptors themselves thus have multiple references, and are
reference counted by the system.

Each process has a fixed size descriptor reference table, where the size is returned
by the getdtablesize call:

nds = getdtablesize();
result int nds;

and guaranteed to be at least 20. The entries in the descriptor reference table are
referred to by small integers; for example if there are 20 slots they are numbered
o to 19.

Each descriptor has a logical set of properties maintained by the system and
defined by its type. Each type supports a set of operations; some operations, such
as reading and writing, are common to several abstractions, while others are
unique. Generic operations applying to many of these types are described in 9.
Naming contexts, files and directories are described in 10. Section 11. describes
communications domains and sockets. Terminals and (structured and unstruc­
tured) devices are described in 12.

A duplicate of a descriptor reference may be made by doing

new = dup (old) ;
result int new; int old;

returning a copy of descriptor reference old indistinguishable from the original.
The new chosen by the system will be the smallest unused descriptor reference
slot. A copy of a descriptor reference may be made in a specific slot by doing

dup2(old, new);
int old, new;

The dup2 call causes the system to deallocate the descriptor reference current

27 A of 15 February 1986

28 System Interface Overview

6.4. Multiplexing Requests

occupying slot new, if any, replacing it with a reference to the same descriptor as
old. This deallocation is also petformed by:

close(old);
int old;

The system provides a standard way to do synchronous and asynchronous multi­
plexing of operations.

Synchronous multiplexing is performed by using the select call:

nds = select(nd, in, out, except, tvp);
result int nds; int nd; result *in, *out, *except;
struct timeval *tvp;

The select call examines the descriptors specified by the sets in, out and
except, replacing the specified bit masks by the subsets that select for input, out­
put, and exceptional conditions respectively (nd indicates the size, in bytes, of
the bit masks). If any descriptors meet the following criteria, then the number of
such descriptors is returned in nds and the bit masks are updated.

o A descriptor selects for input if an input oriented operation such as read or
r e c e i ve is possible, or if a connection request may be accepted (see
Accepting Connections in section 11.1.

o A descriptor selects for output if an output oriented operation such as
write or send is possible, or if an operation that was "in progress", such
as connection establishment, has completed (see section 9.3.

o A descriptor selects for an exceptional condition if a condition that would
cause a SIGURG signal to be generated exists (see section 4.1.

If none of the specified conditions is true, the operation blocks for at most the
amount of time specified by tvp, or waits for one of the conditions to arise if tvp
is given as O.

Options affecting 110 on a descriptor may be read and set by the call:

dopt = fcntl(d, cmd, arg);
result int dopt; int d, cmd, arg;

/* interesting values
idefine F_DUPFD 0
idefine F_SETFD 1
idefine F GETFD 2
idefine F SETFL 3
idefine F GETFL 4
idefine F SETOWN 5
idefine F GETOWN 6

for cmd */
/* return new descriptor */
/* get close-on-exec flag */
/* set close-on-exec flag */
/* set descriptor options */
/* get descriptor options */
/* set descriptor owner (pid/pgrp) *
/* get descriptor owner (pid/pgrp) *

The F _ SETFL cmd may be used to set a descriptor in non-blocking i/o mode
and/or enable signalling when i/o is possible. F _ SETOWN may be used to specify
a process or process group to be signalled when using the latter mode of opera­
tion.

A of 15 February 1986

Chapter 6 - Descriptors 29

Operations on non-blocking descriptors will either complete immediately, note
an error EWOULDBLOCK, partially complete an input or output operation return­
ing a partial count, or return an error EINPROGRESS noting that the requested
operation is in progress. A descriptor which has signalling enabled will cause the
specified process and/or process group be signaled, with a SIGIO for input, out­
put, or in-progress operation complete, or a S IGURG for exceptional conditions.

For example, when writing to a terminal using non-blocking output, the system
will accept only as much data as there is buffer space for and return; when mak­
ing a connection on a socket, the operation may return indicating that the connec­
tion establishment is "in progress". The select facility can be used to deter­
mine when further output is possible on the terminal, or when the connection
establishment attempt is complete.

A of 15 February 1986

7
Resource Controls

Resource Controls .. 33

7.1. Process Priorities .. 33

7.2. Resource Utilization .. 33

7.3. Resource Limits .. 34

7.1. Process Priorities

7.2. Resource Utilization

7
Resource Controls

The system gives CPU scheduling priority to processes that have not used CPU
time recently. This tends to favor interactive processes and processes that exe­
cute only for short periods. It is possible to determine the priority currently
assigned to a process, process group, or the processes of a specified user, or to
alter this priority using the calls:

/* process */ tdefine PRIO PROCESS
tdefine PRIO PGRP
tdefine PRIO USER

o
1
2

/* process group */
/* user id */

prio = getpriority(which, who);
result int prio; int which, who;

setpriority(which, who, prio);
int which, who, prio;

The value prio is in the range -20 to 20. The default priority is 0; lower priori­
ties cause more favorable execution. The getpriori ty call returns the
highest priority (lowest numerical value) enjoyed by any of the specified
processes. The setpriority call sets the priorities of all of the specified
processes to the specified value. Only the super-user may lower priorities.

The resources used by a process are returned by a getrusage call, returning
information in a structure defined in <sys/ resource. h>:

tdefine RUSAGE SELF 0
tdefine RUSAGE_CHILDREN -1

/* usage by this process */
/* usage by all children */

getrusage(who, rusage);
int who; result struct rusage *rusage;

struct rusage {
struct timeval ru_utime; /* user time used */
struct timeval ru_stime; /* system time used */
int ru_maxrss; /* maximum core resident set size: kbyte
int ru_ixrss; /* integral shared memory size (kbytes*s
int ru_idrss; /* unshared data " */
int ru_isrss; /* unshared stack" */
int ru_minflti /* page-reclaims */
int ru_majflt; /* page faults */

33 A of 15 February 1986

34 System Interface Overview

7.3. Resource Limits

int ru_nswap; /* swaps */
int ru_inblock; /* block input operations */
int ru_oublock; /* block output n */
int ru_msgsnd; /* messages sent */
int ru_msgrcv; /* messages received */
int ru_nsignals; /* signals received */
int ru_nvcsw; /* voluntary context switches */
int ru_nivcsw; /* involuntary " */

} ;

The who parameter specifies whose resource usage is to be returned. The
resources used by the current process, or by all the terminated children of the
current process may be requested.

The resources of a process for which limits are controlled by the kernel are
defined in <sys/resource. h>, and controlled by the getrlimi t and
setr limi t calls:

fdefine RLIMIT CPU 0 /* cpu time in milliseconds */
fdefine RLIMIT FSIZE 1 /* maximum file size */
fdefine RLIMIT DATA 2 /* maximum data segment size
fdefine RLIMIT STACK 3 /* maximum stack segment
fdefine RLIMIT CORE 4 /* maximum core file size */
#define RLIMIT RSS 5 /* maximum resident set size

#define RLIM NLIMITS 6

fdefine RLIM INFINITY Ox7fffffff

struct rlimit {
int rlim_cur;
int rlim_max;

} ;

/* current (soft) limit */
/* hard limit */

getrlimit(resource, rIp);
int resource; result struct rlimit *rlp;

setrlimit(resource, rIp);
int resource; struct rlimit *rlp;

*/
size

*/

Only the super-user can raise the maximum limits. Other users may only alter
rUm_cur within the range from 0 to rUm_max or (irreversibly) lower rUm_max.

*/

A of 15 February 1986

8
System Operation Support

System Operation Support ... 37

8.1. Bootstrap Operations ... 37

8.2. Shutdown Operations .. 37

8.3. Accounting .. 38

8.1. Bootstrap Operations

8.2. Shutdown Operations

8
System Operation Support

The calls in this section are permitted only to a privileged user.

The call

mount(type, dir, flags, data);
char *type, *dir;
int flags;
caddr_t data;

extends the UNIX name space. The mount call specifies a block device type
containing a UNIX file system to be made available starting at dire Ifjlags is set
then the file system is read-only; writes to the file system will not be permitted
and access times will not be updated when files are referenced. Data is a pointer
to a structure which contains the type specific arguments to mount.

The call

swapon(blkdev, size);
char *blkdev; int size;

specifies a device to be made available for paging and swapping.

The call

urunount(dir)i
char *diri

unmounts the file system mounted on dire This call will succeed only if the file
system is not currently being used.

The call

fsync(fd)i
int fdi

moves all modified data and attributes of the file referenced by fd to a permanent
storage device. When the fsync call returns, all in-memory modified copies of
buffers for the associated file have been written to disk. This call is different
from the s yn c call below.

The call

37 A of 15 February 1986

38 System Interface Overview

8.3. Accounting

sync();

schedules inputJoutput to clean all system buffer caches.

The call

reboot(how);
int how;

halts or reboots a<'machine. The call may request a reboot by specifying how as
RB _AUTOBOOT, or that the machine be halted with RB _HALT. These constants
are defined in <sys/reboot. h>.

The system optionally. keeps an accounting record in a file for each process that
exits on the system. The format of this record is beyond the scope of this docu­
ment. The accounting may be enabled to a file name by doing

acct(path);
char *path;

If path is null, then accounting is disabled. Otherwise, the named file becomes
the accounting file.

A of 15 February 1986

9
Generic Operations

Generic Operations ... 41

9.1. Read and Write ... 41

9.2. Input/Output Control ... 42

9.3. Non-Blocking and Asynchronous Operations ... 42

9.1. Read and Write

9
Generic Operations

Many system abstractions support the operations read, write and ioctl.
We describe the basics of these common primitives here. Similarly, the mechan­
isms whereby normally synchronous operations may occur in a non-blocking or
asynchronous fashion are common to all system-defined abstractions and are
described here.

The read and write system calls can be applied to communications channels,
files, tenninals and devices. They have the form:

cc = read(fd, buf, nbytes);
result int cc; int fd; result caddr t buf; int nbytes;

cc = write (fd, buf, nbytes);
result int cc; int fd; caddr_t buf; int nbytes;

The read call transfers as much data as possible from the object defined by fd to
the buffer at address bulof size nbytes. The number of bytes transferred is
returned in cc, which is -1 if a return occurred before any data was transferred
because of an error or use of non-blocking operations.

The wr it e call transfers data from the buffer to the object defined by Id.
Depending on the type of fd, it is possible that the write call will accept some
portion of the provided bytes; the user should resubmit the other bytes in a later
request in this case. Error returns because of interrupted or otherwise incomplete
operations are possible.

Scattering of data on input or gathering of data for output is also possible using
an array of input/output vector descriptors. The type for the descriptors is
defined in <sys/uio. h> as:

struct iovec {
caddr_t iov_msg; /* base of a component */
int iov_len; /* length of a component */

} ;

The calls using an array of descriptors are:

41 A of 15 February 1986

42 System Interface Overview

9.2. Input/Output Control

9.3. Non-Blocking and
Asynchronous
Operations

CC = readv(fd, iov, iovlen);
result int cc; int fd; struct iovec *iov; int iovlen;

cc = writev(fd, iov, iovlen);
result int cC; int fd; struct iovec *iov; int iovlen;

Here iovlen is the count of elements in the iov array.

Control operations on an object are performed by the ioctl operation:

ioctl(fd, request, buffer);-
int fd; request; caddr_t buffer;

This operation causes the specified request to be performed on the object Id. The
request parameter specifies whether the argument buffer is to be read, written,
read and written, or is not needed, and also the size of the buffer, as well as the
request Different descriptor types and subtypes within descriptor types may use
distinct ioctl requests. For example, operations on terminals control flushing
of input and output queues and setting of terminal parameters; operations on
disks cause formatting operations to occur; operations on tapes control tape posi­
tioning.

The names for basic control operations are defined in <sys/ ioctl. h>.

A process that wishes to do non-blocking operations on one of its descriptors sets
the descriptor in non-blocking mode as described in section 6.4. Thereafter the
read call will return a specific EWOULDBLOCK error indication if there is no
data to be read. The process may select the associated descriptor to deter­
mine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either
accept some of the provided data, returning a shorter than normal length, or
return an error indicating that the operation would block. More output can be
performed as soon as a select call indicates the object is writeable.

Operations other than data input or output may be performed on a descriptor in a
non-blocking fashion. These operations will return with a characteristic error
indicating that they are in progress if they cannot return immediately. The
descriptor may then be se 1 e ct 'ed for wr it e to find out when the operation
can be retried. When select indicates the descriptor is write able, a
respecification of the original operation will return the result of the operation.

~~sun ~~ microsystems
A of 15 February 1986

10

File System

File System .. 45

10.1. Naming ... 45

10.2. Creation and Removal .. 46

Directory Creation and Removal ... 46

File Creation .. 46

Creating References to Devices .. 46

File and Device Removal ... 47

10.3. Reading and Modifying File Attributes ... 47

10.4. Links and Renaming ... 49

10.5. Extension and Truncation .. 49

10.6. Checking Accessibility .. 50

10.7. Locking ... 50

10.8. Disk Quotas .. 51

10.1. Naming

10
File System

The file system abstraction provides access to a hierarchical file system structure.
The file system contains directories (each of which may contain other sub­
directories) as well as files and references to other objects such as devices and
inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system
related information is present in a file. Files may be read and written in a
random-access fashion. The user may read the data in a directory as though it
were an ordinary file to determine the names of the contained files, but only the
system may write into the directories. The file system stores only a small amount
of ownership, protection and usage information with a file.

The file system calls take path name arguments. These consist of a zero or more
component file names separated by / characters, where each file name is up to
255 ASCII characters excluding null and /.

Each process always has two naming contexts: one for the root directory of the
file system and one for the current working directory. These are used by the sys­
tem in the filename translation process. If a path name begins with a / , it is
called a full path name and interpreted relative to the root directory context. If
the path name does not begin with a / it is called a relative path name and inter­
preted relative to the current directory context.

The system limits the total length of a path name to 1024 characters.

The file name .. in each directory refers to the parent directory of that direc­
tory.

The calls

chdir(path);
char *path;

chroot(path);
char *path;

change the current working directory and root directory context of a process.
Only the super-user can change the root directory context of a process.

45 A of 15 February 1986

46 System Interface Overview

10.2. Creation and Removal

Directory Creation and
Removal

File Creation

Creating References to
Devices

The file system allows directories, files and special devices, to be created and
removed from the file system.

A directory is created with the rnkdir system call:

mkdir(path, mode);
char *path; int mode;

and removed with the rmdir. system call:

rmdir(path);
char *path;

A directory must be empty if it is to be deleted.

Files are created with the open system call,

fd = open(path, of lag, mode);
result int fd; char *path; int of lag, mode;

The path parameter specifies the name of the file to be created. The oflag param­
eter must include 0_ CREAT from below to cause the file to be created. The pro­
tection for the new file is specified in mode. Bits for oflag are defined in
<sys/file.h>:

#define o RDONLY 000 /* open for reading */
fdefine o WRONLY 001 /* open for writing */
fdefine o RDWR 002 /* open for read & write */
fdefine o NDELAY 004 /* non-blocking open */
fdefine o APPEND 010 /* append on each write */
fdefine o CREAT 01000 /* open with file create */
fdefine o TRUNC 02000 /* open with truncation */
fdefine o EXCL 04000 /* error on create if file exists

One of 0_ RDONL Y, 0_ WRONLY and 0_ RDWR should be specified, indicating
what types of operations are desired to be performed on the open file. The opera­
tions will be checked against the user's access rights to the file before allowing
the open to succeed. Specifying 0_ APPEND causes writes to automatically
append to the file. The flag 0 _ CREAT causes the file to be created if it does not
exist, with the specified mode, owned by the current user and the group of the
containing directory.

If the open specifies to create the file with 0_ EXCL and the file already exists,
then the open will fail without affecting the file in any way. This provides a
simple exclusive access facility.

The file system allows entries which reference peripheral devices. Peripherals
are distinguished as block or character devices according by their ability to sup­
port block-oriented operations. Devices are identified by their 'major' and
'minor' device numbers. The major device number determines the kind of peri­
pheral it is, while the minor device number indicates one of possibly many peri­
pherals of that kind. Structured devices have all operations performed internally
in 'block' quantities while unstructured devices often have a number of special
ioctl operations, and may have input and output performed in large units. The

*/

~~sun ~~ microsystems
A of 15 February 1986

File and Device Removal

10.3. Reading and Modifying
File Attributes

mknod call creates special entries:

mknod(path, mode, dev);
char *path; int mode, dev;

Chapter 10 - File System 47

where mode is fonned from the object type and access pennissions. The parame­
ter dey is a configuration dependent parameter used to identify specific character
or block i/o devices.

A reference to a file or special device may be removed with the unlink call,

unlink(path);
char *path;

The caller must have write access to the directory in which the file is located for
this call to be successful.

Detailed information about the attributes of a file system may be obtained with
the calls:

iinclude <sys/vfs.h>

statfs(path, buf);
char *path;
result struct statfs *buf;

fstatfs(fd, buf);
int fd;
result struct statfs *buf;

The s tat f s structure includes the file system type, file system block size, total
blocks in the file system, free blocks, free blocks available to non superuser, total
file nodes in the file system, free file nodes in the file system, and the file system
ID.

Directory entries can be obtained in a filesystem-independent fonnat by using the
getdirentries call:

cc = getdirentries(d, buf, nbytes, basep);
result int cc;
int d;
char *buf;
int nbytes;
result long *basep;

Detailed information about the attributes of a file may be obtained with the calls:

iinclude <sys/stat.h>

stat (path, stb);
char *path; result struct stat *stb;

fstat(fd, stb);
int fd; result struct stat *stb;

The stat structure includes the file type, protection, ownership, access times,

~\sun ,~ microsystems
A of 15 February 1986

48 System Interface Overview

size, and a count of hard links. If the file is a symbolic link, then the status of the
link itself (rather than the file the link references) may be found using the lstat
call:

lstat(path, sth);
char *path; result struct stat *stb;

Newly created files are assigned the user id of the process that created it and the
group id of the directory in which it was created. The ownership of a file may be
changed by either of the calls

chown(path, owner, group);
char *path; int owner, group;

fchown(fd, owner, group);
int fd, owner, group;

In addition to ownership, each file has three levels of access protection associated
with it. These levels are owner relative, group relative, and global (all users and
groups). Each level of access has separate indicators for read permission, write
permission, and execute permission. The protection bits associated with a file
may be set by either of the calls:

chmod(path, mode);
char *path; int mode;

fchmod(fd, mode);
int fd, mode;

where mode is a value indicating the new protection of the file. The file mode is
a three digit octal number. Each digit encodes read access as 4, write access as 2
and execute access as 1, or' ed together. The 0700 bits describe owner access, the
070 bits describe the access rights for processes in the same group as the file, and
the 07 bits describe the access rights for other processes.

Three additional bits exist: the 04000 'set-user-id' bit can be set on an executable
file to cause the effective user-id of a process which executes the file to be set to
the owner of that file; the 02000 bit has a similar effect on the effective group-id.
The 01000 bit causes an image of an executable program to be saved longer than
would otherwise be nonnal; this 'sticky' bit is a hint to the system that a program
is heavily used.

Finally, the access and modify times on a file may be set by the call:

utimes(path, tvp);
char *path; struct timeval *tvp[2];

This is particularly useful when moving files between media, to preserve rela­
tionships between the times the file was modified.

~\sun ,~ microsystems
A of 15 February 1986

10.4. Links and Renaming

10.5. Extension and
Truncation

Chapter IO-File System 49

Links allow multiple names for a file to exist. Links exist independently of the
file linked to.

Two types of links exist, hard links and symbolic links. A hard link is a refer­
ence counting mechanism that allows a file to have multiple names within the
same file system. Symbolic links cause string substitution during the pathname
interpretation process.

Hard links and symbolic links have different properties. A hard link insures the
target file will always be accessible, even after its original directory entry is
removed; no such guarantee exists for a symbolic link. Symbolic links can span
file systems boundaries.

The following calls create a new link, named path2, to path]:

link(pathl, path2);
char *pathl, *path2;

symlink(pathl, path2);
char *pathl, *path2;

The unlink primitive may be used to remove either type of link.

If a file is a symbolic link, the 'value' of the link may be read with the
readlink call,

len = readlink(path, buf, bufsize);
result int len; result char *path, *buf; int bufsize;

This call returns, in buf, the null-terminated string substituted into pathnames
passing through path.

Atomic renaming of file system resident objects is possible with the rename
call:

rename (oldname, newname);
char *oldname, *newname;

where both oldname and newname must be in the same file system. If newname
exists and is a directory, then it must be empty.

Files are created with zero length and may be extended simply by writing or
appending to them. While a file is open the system maintains a pointer into the
file indicating the current location in the file associated with the descriptor. This
pointer may be moved about in the file in a random access fashion. To set the
current offset into a file, the lseek call may be used,

oldoffset = lseek(fd, offset, type);
result off_t oldoffset; int fd; off_t offset; int type;

where type is given in <8Y8/ file. h> as one of,

idefine L SET 0
idefine L INCR 1
idefine L XTND 2

The call

/* set absolute file offset */
/* set file offset relative to current pc
/* set offset relative to end-of-file */

A of 15 February 1986

50 System Interface Overview

10.6. Checking Accessibility

10.7. Locking

lseek(fd, 0, L_INCR)

returns the current offset into the file.

Files may have 'holes' in them. Holes are void areas in the linear extent of the
file where data has never been written. These may be created by seeking to a
location in a file past the current end-of-file and writing. Holes are treated by the
system as zero valued bytes.

A file may be truncated with either of the calls:

truncate (path, length);
char *path;
off_t length;

ftruncate(fd, length);
int fd;
off_t length;

reducing the size of the specified file to length bytes.

A process running with different real and effective user ids may interrogate the
accessibility of a file to the real user by using the a c c e s scali:

accessible = access (path, how);
result int accessible; char *path; int how;

Here how is constructed by or'ing the following bits, defined in
<sys/file.h>:

f:define F OK 0 /* file exists */
f:define X OK 1 /* file is executable */
f:define W OK 2 /* file is writable */
f:define R OK 4 /* file is readable */

The presence or absence of advisory locks does not affect the result of access.

The file system provides basic facilities that allow cooperating processes to syn­
chronize their access to shared files. A process may place an advisory read or
wr i te lock on a file, so that other cooperating processes may avoid interfering
with the process' access. This simple mechanism provides locking with file
granularity. More granular locking can be built using the IPC facilities to provide
a lock manager. The system does not force processes to obey the locks; they are
of an advisory nature only.

Locking is performed after an open call by applying the flock primitive,

flock(fd, how);
int fd, how;

where the how parameter is formed from bits defined in < s y s / file. h>:

A of 15 February 1986

10.8. Disk Quotas

idefine LOCK SH 1
idefine LOCK EX 2
idefine LOCK NB 4
idefine LOCK UN 8

Chapter 10 - File System 51

/* shared lock */
/* exclusive lock */
/* don't block when locking */
/* unlock */

Successive lock calls may be used to increase or decrease the level of locking. If
an object is currently locked by another process when a flock call is made, the
caller will be blocked until the current lock owner releases the lock; this may be
avoided by including LOCK _ NB in the how parameter. Specifying LOCK_UN
removes all locks associated with the descriptor. Advisory locks held by a pro­
cess are automatically deleted when the process terminates.

As an optional facility, each file system may be requested to impose limits on a
user's disk usage. Two quantities are limited: the total amount of disk space
which a user may allocate in a file system and the total number of files a user
may create in a file system. Quotas are expressed as hard limits and soft limits.
A hard limit is always imposed; if a user would exceed a hard limit, the operation
which caused the resource request will fail. A soft limit results in the user
receiving a warning message, but with allocation succeeding. Facilities are pro­
vided to tum soft limits into hard limits if a user has exceeded a soft limit for an
unreasonable period of time.

To manipulate disk quotas on a file system the quotact 1 call is used:

iinclude <ufs/quota.h>

quotactl(cmd, special, uid, addr);
int crod;
char *special;
int uid;
caddr_t addr;

where cmd indicates a command to be applied to the user ID uid. Special is a
pointer to a null-terminated string containing the path name of the block special
device for the file system being manipulated. The block special device must be
mounted. Addr is the address of an optional, command specific, data structure
which is copied in or out of the system. The interpretation of addr is given with
each command.

~~sun ~'f? microsystems
A of 15 February 1986

11
Interprocess Cotnmunications

Interprocess Communications .. 55

11.1. Interprocess Communication Primitives ... 55

Communication Domains .. 55

Socket Types and Protocols .. 55

Socket Creation, Naming, and Service Establishment 56

Accepting Connections .. 56

Making Connections ... 57

Sending and Receiving Data .. 57

Scatter/Gather and Exchanging Access Rights .. 58

Using Read and Write with Sockets .. 59

Shutting Down Halves of Full-Duplex Connections 59

Socket and Protocol Options .. 59

11.2. UNIX Domain .. 59

Types of Sockets ... 59

Naming ... 60

Access Rights Transmission ... 60

11.3. INTERNET Domain ... 60

Socket Types and Protocols .. 60

Socket Naming ... 60

Access Rights Transmission ... 60

Raw Access .. 60

11.1. Interprocess
Communication
Primitives

Communication Domains

Socket Types and Protocols

11
Interprocess Communications

The system provides access to an extensible set of communication domains. A
communication domain is identified by a manifest constant defined in the file
<sys/ socket. h>. Important standard domains supported by the system are
the UNIX domain, AF _UNIX, for communication within the system, and the
"internet" domain for communication in the DARPA internet, AF_INET. Other
domains can be added to the system.

Within a domain, communication takes place between communication endpoints
known as sockets. Each socket has the potential to exchange information with
other sockets within the domain.

Each socket has an associated abstract type, which describes the semantics of
communication using that socket. Properties such as reliability, ordering, and
prevention of duplication of messages are determined by the type. The basic set
of socket types is defined in <sys/ socket. h>:

/* Standard socket types */
-#define SOCK DGRAM 1 /* datagram */
-#define SOCK STREAM 2 /* virtual circuit */
-#define SOCK RAW 3 /* raw socket */
-#define SOCK RDM 4 /* reliably-delivered message */
-#define SOCK_SEQPACKET 5 /* sequenced packets */

The SOCK _ DGRAM type models the semantics of datagrams in network commun­
ication: messages may be lost or duplicated and may arrive out-of-order. The
SOCK _ RDM type models the semantics of reliable datagrams: messages arrive
unduplicated and in-order, the sender is notified if messages are lost. The send
and receive operations (described below) generate reliable/unreliable
datagrams. The SOCK _ STREAM type models connection-based virtual circuits:
two-way byte streams with no record boundaries. The SOCK _ SEQPACKET type
models a connection-based, full-duplex, reliable, sequenced packet exchange; the
sender is notified if messages are lost, and messages are never duplicated or
presented out-of-order. Users of the last two abstractions may use the facilities
for out-of-band transmission to send out-of-band data.

55 A of 15 February 1986

56 System Interface Overview

Socket Creation, Naming, and
Service Establishment

Accepting Connections

SOCK_RAW is used for unprocessed access to internal network layers and inter­
faces; it has no specific semantics.

Other socket types can be defined.2

Each socket may have a concrete protocol associated with it. This protocol is
used within the domain to provide the semantics required by the socket type. For
example, within the "internet" domain, the SOCK _DGRAM type may be imple­
mented by the UDP user datagram protocol, and the SOCK_STREAM type may be
implemented by the TCP transmission control protocol, while no standard proto­
cols to provide SOCK_RDM or SOCK_SEQPACKET sockets exist.

Sockets may be connected or unconnected. An unconnected socket descriptor is
obtained by the socket call:

s = socket (domain, type, protocol);
result int s; int domain, type, protocol;

An unconnected socket descriptor may yield a connected socket descriptor in one
of two ways: either by actively connecting to another socket, or by becoming
associated with a name in the communications domain and accepting a connec­
tion from another socket.

To accept connections, a socket must first have a binding to a name within the
communications domain. Such a binding is established by a bind call:

bind(s, name, namelen);
int s; char *name; int namelen;

A socket's bound name may be retrieved with a getsockname call:

getsockname(s, name, namelen);
int s; result caddr_t name; result int *namelen;

while the peer's name can be retrieved with getpeername:

getpeername(s, name, namelen);
int s; result caddr_t name; result int *namelen;

Domains may support sockets with several names.

Once a binding is made, it is possible to listen for connections:

listen(s, backlog);
int s, backlog;

The backlog specifies the maximum count of connections that can be simultane­
ously queued awaiting acceptance.

An accept call:

2 This release does not support the SOCK _RDM and SOCK _ SEQP ACKE T types.

4J\sun ~~ microsystems
A of 15 February 1986

Making Connections

Sending and Receiving Data

Chapter 11 - Interprocess Communications 57

t = accept(s, name, anamelen);
result int t;
int s;
result caddr t name;
result int *anamelen;

returns a descriptor for anew, connected, socket from the queue of pending con­
nections on s.

An active connection to a named socket is made by the connect call:

connect(s, name, namelen);
int s: caddr_t name: int namelen:

It is also possible to create connected pairs of sockets without using the domain's
name space to rendezvous; this is done with the socketpair ca1l3:

socketpair(d, type, protocol, sv):
int d, type, protocol; result int sv[2];

Here the returned sv descriptors correspond to those obtained with accept and
connect.

The call

pipe (pv) ;
result int pv[2]:

creates a pair of SOCK _ STREAM sockets in the UNIX domain, with pv [0] only
writeable and pv [1] only readable.

Messages may be sent from a socket by:

cc = sendto(s, buf, len, flags, to, tolen);
result int cc;
int s;
caddr_t buf;
int len, flags;
caddr_t to;
int tolen;

if the socket is not connected or:

cc = send(s, buf, len, flags):
result int cc; int s; caddr_t buf; int len, flags;

if the socket is connected. The corresponding receive primitives are:

3 This release supports soc k e t p air creation only in the "unix" communication domain.

A of 15 February 1986

58 System Interface Overview

Scatter/Gather and
Exchanging Access Rights

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr);
result int msglen;
int s;
result caddr_t buf;
int len, flags;
result caddr t from; result int *fromlenaddr;

and

msglen = recv(s, buf, len, flags);
result int msglen.;
int s;
result caddr_t buf;
int len, flags;

In the unconnected case, the parameters to and tolen specify the destination or
source of the message, while the from parameter stores the source of the mes­
sage, and *fromlenaddr initially gives the size of the from buffer and is updated
to reflect the true length of the from address.

All calls cause the message to be received in or sent from the message buffer of
length len bytes, starting at address buf. The flags specify peeking at a message
without reading it or sending or receiving high-priority out-of-band messages, as
follows:

fdefine MSG PEEK Ox! /* peek at incoming message */
fdefine MSG OOB Ox2 /* process out-of-band data */

It is possible to scatter and gather data and to exchange access rights with mes­
sages. When either of these operations is involved, the number of parameters to
the call becomes large. Thus the system defines a message header structure, in
<sys/ socket. h>, which is used to contain the parameters to the calls:

struct msghdr {

} ;

caddr_t msg_name;
int msg_namelen; /*
struct iov *msg_iov;
int msg_iovlen; /*
caddr_t msg_accrights;
int msg_accrightslen;

/* optional address */
size of address */

/* scatter/gather array */
f elements in msg_iov */

/* access rights sent/received'
/* size of msg_accrights */

Here msg_ name and msg_ namelen specify the source or destination address if the
socket is unconnected; msg_ name may be given as a null pointer if no names are
desired or required. The msg_iov and msg_iovlen describe the scatter/gather
locations, as described in section 9.1. Access rights to be sent along with the
message are specified in msg_ accrights, which has length msg_ accrightslen. In
the "unix" domain these are an array of integer descriptors, taken from the send­
ing process and duplicated in the receiver.

This structure is used in the operations sendmsg and recvrnsg:

~~sun ~~ microsystems
A of 15 February 1986

Using Read and Write with
Sockets

Shutting Down Halves of
Full-Duplex Connections

Socket and Protocol Options

11.2. UNIX Domain

Types of Sockets

Chapter 11 - Interprocess Communications 59

sendmsg(s, msg, flags)i
int Si struct msghdr *msgi int flagsi

msglen = recvmsg(s, msg, flags) i

result int msglen; int Si result struct msghdr *msg; int flag

The nonnal UNIX read and wri te calls may be applied to connected sockets
and translated into send and receive calls from or to a single area of memory
and discarding any rights received. A process may operate on a virtual circuit
socket, a tenninal or a file with blocking or non-blocking inputJoutput operations
without distinguishing the descriptor type.

A process that has a full-duplex socket such as a virtual circuit and no longer
wishes to read from or write to this socket can give the call:

shutdown(s, direction);
int s, direction;

where direction is 0 to not read further, 1 to not write further, or 2 to completely
shut the connection down.

Sockets, and their underlying communication protocols, may support options.
These options may be used to manipulate implementation specific or non­
standard facilities. The getsockopt and setsockopt calls are used to con­
trol options:

getsockopt(s, level, optname, optval, optlen)i
int s, level, optname;
result caddr_t optval;
result int *optleni

setsockopt(s, level, optname, optval, optlen) i

int s, level, optname; caddr_t optvali int optleni

The option optname is interpreted at the indicated protocol level for socket s. If a
value is specified with optval and optlen, it is interpreted by the software operat­
ing at the specified level. The level SOL_SOCKET is reserved to indicate options
maintained by the socket facilities. Other level values indicate a particular proto­
col which is to act on the option request; these values are normally interpreted as
a "protocol number".

This section describes briefly the properties of the UNIX communications
domain.

In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facili­
ties, while SOCK _DGRAM provides datagrams - unreliable message-style com­
munications.

A of 15 February 1986

60 System Interface Overview

Naming

Access Rights Transmission

11.3. INTERNET Domain

Socket Types and Protocols

Socket Naming

Access Rights Transmission

Raw Access

Socket names are strings and the current implementation of the UNIX domain
embeds bound sockets in the UNIX file system name space; this is a side effect of
the implementation.

The ability to pass UNIX descriptors with messages in this domain allows migra­
tion of service within the system and allows user processes to be used in building
system facilities.

This section describes briefly how the INTERNET domain is mapped to the model
described in this section. More information will be found in the Networking
Implementation Notes in Networking on the Sun Workstation.

SOCK _STREAM is supported by the INTERNET TCP protocol; SOCK_DGRAM by
the UDP protocol. The SOCK _ SEQP ACKET has no direct INTERNET family
analogue; a protocol based on one from the XEROX NS family and layered on top
of IP could be implemented to fill this gap.

Sockets in the INTERNET domain have names composed of the 32 bit internet
address, and a 16 bit port number. Options may be used to provide source rout­
ing for the address, security options, or additional addresses for subnets of INTER­

NET for which the basic 32 bit addresses are insufficient

No access rights transmission facilities are provided in the INTERNET domain.

The INTERNET domain allows the super-user access to the raw facilities of the
various network interfaces and the various i nte mal layers of the protocol imple­
mentation. This allows administrative and debugging functions to occur. These
interfaces are modeled as SOCK RAW sockets.

~~sun ~~ microsystems
A of 15 February 1986

12

Devices

Devices ... 63

12.1. Structured Devices ... 63

12.2. Unstructured Devices ... 63

12.1. Structured Devices

12.2. Unstructured Devices

12
Devices

The system uses a collection of device-drivers to access attached peripherals.
Such devices are grouped into two classes: structured devices on which block­
oriented input/output operations occur, and unstructured devices (the rest).

Structured devices include disk and tape drives, and are accessed through a sys­
tem buffer-caching mechanism, which permits them to be accessed as ordinary
files are, performing reads and writes as necessary to allow random-access.

The mount command in the system allows a structured device containing a file
system volume to be accessed through the UNIX file system calls.

Tape drives also typically provide a structured interface, although this is rarely
used.

Unstructured devices are those devices which do not support a randomly
accessed block structure.

Communications lines, raster plotters, nonnal magnetic tape access (in large or
variable size blocks), and access to disk drives pennitting large block transfers
and special operations like disk fonnatting and labelling all use unstructured dev­
ice interfaces.

The writing of devices for unstructured devices other than communications lines
is described in the Device Driver Manual in the System Internals Manual.

63 A of 15 February 1986

13
Debugging Support

Debugging Support ... 67

13.1. ptrace - Process Tracing .. 67

13.1. ptrace - Process
Tracing

13
Debugging Support

ptrace provides a means by which a process may control the execution of
another process, and examine and change its memory image. Its primary use is
for the implementation of breakpoint debugging4.

#include <signal.h>
#include <sys/ptrace.h>
#include <sys/wait.h>

ptrace(request, pid, addr, data, addr2)
enum ptracereq request;
int pid;
char *addr;
int data;
char *addr2;

There are five arguments whose interpretation depends on the request argument.
Generally, pid is the process ID of the traced process. A process being traced
behaves normally until it encounters some signal whether internally generated
like 'illegal instruction' or externally generated like 'interrupt'. See sigvec(2)
for the list. Then the traced process enters a stopped state and the tracing process
is notified via wait(2). When the traced process is in the stopped state, its
memory image can be examined and modified using ptrace. If desired,
another ptrace request can then cause the traced process either to terminate or
to continue, possibly ignoring the signal.

Note that several different values of the request argument can make ptrace
return data values - since -1 is a possibly legitimate value, to differentiate
between -1 as a legitimate value and -1 as an error code, you should clear the
errno global error code before doing a ptrace call, and then check the value of
errno afterwards.

The value of the request argument determines the precise action of the call:

PTRACE TRACEME
This request is the only one used by the traced process; it declares that the
process is to be traced by its parent. All the other arguments are ignored.
Peculiar results will ensue if the parent does not expect to trace the child.

4 Enhancements which would allow a descriptor-based process control facility have not been implemented.

67 A of 15 February 1986

68 System Interface Overview

PTRACE_PEEKTEXT, PTRACE_PEEKDATA
The word in the traced process's address space at addr is returned. If the
instruction and data spaces are separate (for example, historically on a PDP-

11), request PTRACE _PEEKTEXT indicates instruction space while
PTRACE_PEEKDATA indicates data space. Addr must be even, the child
must be stopped and the input data and addr2 are ignored.

PTRACE PEEKUSER
The word of the system's per-process data area corresponding to addr is
returned. Addr must be a valid offset within the kernel's per-process data
pages. This space contains the registers and other information about the pro­
cess; its layout corresponds to the user structure in the system.

PTRACE_~KETEXT, PTRACE_POKEDATA
The given data is written at the word in the process's address space
corresponding to addr, which must be even. No useful value is returned. If
the instruction and data spaces are separate request PTRACE _ PEEKTEXT
indicates instruction space while PTRACE_PEEKDATA indicates data space.
The PTRACE _ POKETEXT request must be used to write into a process's
text space even if the instruction and data spaces are not separate. Attempts
to write in a pure text space fail if another process is executing the same file.

PTRACE POKEUSER
The process's system data is written, as it is read with request
PTRACE_PEEKUSER. Only a few locations can be written in this way: the
general registers, the floating point status and registers, and certain bits of
the processor status word.

PTRACE CONT
The data argument is taken as a signal number and the child's execution
continues at location addr as if it had incurred that signal. Normally the sig­
nal number will be either 0 to indicate that the signal that caused the stop
should be ignored, or that value fetched out of the process's image indicating
which signal caused the stop. If addr is (int *)1 then execution continues
from where it stopped.

PTRACE KILL
The traced process terminates.

PTRACE SINGLESTEP
Execution continues as in request PTRACE _ CONT; however, as soon as pos­
sible after execution of at least one instruction, execution stops again. The
signal number from the stop is SIGTRAP. On the Sun and VAX-II the T­
bit is used and just one instruction is executed. This is part of the mechan­
ism for implementing breakpoints.

PTRACE ATTACH
Attach to the process identified by the pid argument and begin tracing it.
Process pid does not have to be a child of the requestor, but the requestor
must have permission to send process pid a signal and the effective userids
of the requesting process and process pid must match.

A of 15 February 1986

Chapter 13 - Debugging Support 69

PTRACE DETACH
Detach the process being traced. Process pid is no longer being traced and
continues its execution. The data argument is taken as a signal number and
the process continues at location addr as if it had incurred that signal.

PTRACE GETREGS
The traced process's registers are returned in a structure pointed to by the
addr argument. The registers include the general purpose registers, the pro­
gram counter and the program status word. The 'regs' structure defined in
<machine/ reg. h> describes the data that is returned.

PTRACE SETREGS
The traced process's registers are written from a structure pointed to by the
addr argument. The registers include the general purpose registers, the pro­
gram counter and the program status word. The 'regs' structure defined in
<machine/ reg. h> describes the data that is set.

PTRACE_READTEXT, PTRACE_READDATA
Read data from the address space of the traced process. If the instruction
and data spaces are separate, request PTRACE _READTEXT indicates
instruction space while PTRACE_READDATA indicates data space. The
addr argument is the address within the traced process from where the data
is read, the data argument is the number of bytes to read, and the addr2
argument is the address within the requesting process where the data is writ­
ten.

PTRACE_~TETEXT, PTRACE_WRITEDATA
Write data into the address space of the traced process. If the instruction and
data spaces are separate, request PTRACE _ READTEXT indicates instruction
space while PTRACE_READDATA indicates data space. The addr argument
is the address within the traced process where the data is written, the data
argument is the number of bytes to write, and the addr2 argument is the
address within the requesting process from where the data is read.

As indicated, these calls (except for requests PTRACE _ TRACEME and
PTRACE_ATTACH) can be used only when the subject process has stopped.
The wait call is used to determine when a process stops; in such a case the 'ter­
mination' status returned by wait has the value WSTOPPED to indicate a stop
rather than genuine termination.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id
facilities on subsequent execve(2) calls. If a traced process calls execve, it
will stop before executing the first instruction of the new image showing signal
SIGTRAP.

On the Sun and VAX-11, 'word' also means a 32-bit integer.

A of 15 February 1986

A
Summary of Facilities

Summary of Facilities ... 73

A.I. Kernel Primitives .. 73

Process Naming and Protection .. 73

Memory Management .. 73

Signals ... 73

Timing and Statistics .. 74

Descri ptors .. 74

Resource Controls .. 74

System Operation Support ... 74

A.2. System Facilities ... 74

Generic Operations .. 74

File System ... 75

Interprocess Communications ... 75

Debugging Support .. 76

A.t. Kernel Primitives
Process Naming and
Protection

Memory Management

Signals

gethostid
sethostname
gethostname
getpid
fork
exit
execve
getuid
geteuid
setreuid
getgid
getegid
getgroups
setregid
setgroups
getpgrp
setpgrp

<mman.h>
sbrk
getpagesize
mmapt
mremapt
munmapt

<signal.h>
sigvec
kill
killpgrp
sigblock
sigsetmask

A
Summary of Facilities

get UNIX host id
set UNIX host name
get UNIX host name
get process id
create new process
terminate a process
execute a different process
get user id
get effective user id
set real and effective user id' s
get accounting group id
get effective accounting group id
get access group set
set real and effective group id's
set access group set
get process group
set process group

memory management definitions
change data section size
get memory page size
map pages of memory
remap pages in memory
unmap memory

signal definitions
set handler for signal
send signal to process
send signal to process group
block set of signals
restore set of blocked signals

4 t These calls are supported in limited fonn in the 3.0 Sun release.

73 A of 15 February 1986

74 System Interface Overview

sigpause wait for signals
sigstack set software stack for signals

Timing and Statistics
<sys/time.h> time-related definitions
gettimeofday get current time and timezone
settimeofday set current time and time zone
getitimer read an interval timer
setitimer get and set an interval timer
profil profile process

Descriptors
getdtablesize descriptor reference table size
dup duplicate descriptor
dup2 duplicate to specified index
close close descriptor
select multi plex input/output
fcntl control descriptor options

Resource Controls <sys/resource.h> resource-related definitions
getpriority get process priority
setpriority set process priority
getrusage get resource usage
getrlimit get resource limitations
setrlimit set resource limitations

System Operation Support mount mount a device file system
swapon add a swap device
unmount umount a file system
sync flush system caches
reboot reboot a machine
acct specify accounting file

A.2. System Facilities
Generic Operations read read data

write write data
<sys/uio.h> scatter-gather related definitions
readv scattered data input
writev gathered data output
<sys/ioctl.h> standard control operations
ioctl device control operation

4 t Not supported in the 1.0 Sun release.

A of 15 February 1986

File System

Interprocess Communications

Appendix A - Summary of Facilities 75

Operations marked with a * exist in two forms: as shown, operating on a file
name, and operating on a file descriptor, when the name is preceded with a "f'.

<sys/file.h>
chdir
chroot
mkdir
rmdir
open
mknod
unlink
stat*
lstat
chown*
chmod*
utimes
link
symlink
readlink
rename
lseek
truncate*
access
flock

<sys/socket.h>
socket
bind
getsockname
listen
accept
connect
socketpair
sendto
send
recvfrom
recv
sendmsg
recvmsg
shutdown
getsockopt
setsockopt

file system definitions
change directory
change root directory
make a directory
remove a directory
open a new or existing file
make a special file
remove a link
return status for a file
returned status of link
change owner
change mode
change access/modify times
make a hard link
make a symbolic link
read contents of symbolic link
change name of file
reposition within file
truncate file
determine accessibility
lock a file

standard definitions
create socket
bind socket to name
get socket name
allow queueing of connections
accept a connection
connect to peer socket
create pair of connected sockets
send data to named socket
send data to connected socket
receive data on unconnected socket
receive data on connected socket
send gathered data and/or rights
receive scattered data and/or rights
partially close full-duplex connection
get socket option
set socket option

A of 15 February 1986

76 System Interface Overview

Debugging Support
ptrace trace process

A of 15 February 1986

Index

A
accept, 57
access ability of a file, 50
access, 50
acct,38
attributes

of a file, 47
of a file system, 47

B
bind, 56
binding sockets, 56

C
chdir,45
chmod, 48
chown,48
chroot,45
close, 28
connect, 57
connecting to sockets, 56
control operations, 42
control terminal, 10
copying descriptors, 27
creating

directory, 46
files, 46

creating a process, 8
creating devices, 47
creating files

open, 46
creating sockets, 56

D
debugging support, 67 thru 69

ptrace, 67 thru 69
descriptors, 27 thru 29

close, 28
copying, 27
dopt,28
dup,27
dup2,27
duplicating, 27
getdtablesize,27
reference table, 27
removing, 28

-77-

descriptors, continued
select, 28
setting options, 28
synchronous multiplexing, 28
type, 27

devices, 63
creating, 47
removing, 47
structured, 63
unstructured, 63

disk quotas, 51
dopt, 28
dup,27
dup2,27
duplicating descriptors, 27

E
execve,8
exit, 8
extending files, 49

F
fchmod, 48
fchown,48
file

access times, 48
accessability,50
attributes, 47
extending, 49
hard links, 49
links,49
locking, 50
modify times, 48
ownership, 48
permission, 48
protection, 48
renaming, 49
seeking in, 49
symbolic links, 49
truncating, 50

file permission
changing, 48
set group-id, 48
set user-id, 48
sticky bit, 48

file system, 45 thru 51
attributes, 47

Index Continued

file system, continued
ehdir,45
ehroot,45
creating directory, 46
naming, 45
removing directory, 46

files
creating, 46
removing, 47

flock, 50
fork, 8
fstat,47
fstatfs,47
fsyne,37
ftruncate,50

G
gather write, 41
generic operations, 41 thr" 42
getdirentries,47
getdomainname, 7
getdtablesize,27
getegid, 9
geteuid, 9
getgid, 9
gethostname, 7
getitimer,24
getpagesize,14
getpeername,56
getpgrp,9
getpid, 7
getpriority,33
getrlimi t, 34
getrusage, 33
getsockname,56
getsockopt,59
gettimeofday,23
getuid, 9
group ID's, 8

H
hard links, 49
host identifiers, 7
hostid, 7

I
interprocess communication, 55 thr" 60
interval timers, 24
ioctl, 10, 42

K
kill, 19
killpgrp, 19

L
link, 49
links, 49

hard, 49
symbolic, 49

-78-

listen, 56
locking files, 50
lseek,49

M
memory management, 13 thru 14
mkdir,46
mknod, 47
mmap,14
mount, 37
multiplexing requests, 28 thru 29
munmap,14

o
operations support, 37 thru 38
options for descriptors, 28
ownership of a file, 48

p
process groups, 9
process priorities, 33
process tracing - ptrace, 67 thru 69
processes, 8

creating, 8
identifiers, 7
terminating, 8
waiting for, 8

processes and protection, 7 thr" 10
profil,24
ptrace, 67 thr" 69

Q
quotactl,51
quotas, 51

R
read, 41
readlink,49
readv,42
reboot, 38
receiving from sockets, 57
recv,58
recvf rom, 58
recvmsg,59
reference table, 27
removing

directory, 46
removing descriptors, 28
removing devices, 47
removing files, 47
rename, 49
renaming files, 49
resource controls, 33 thru 34
rmdir,46

s
sbrk,13
scatter read, 41
seeking in files, 49
select, 28
send, 57
sending to sockets, 57
sencimsg,59
sendto,57
setdomainname, 7
setgroups,9
sethostname,7
seti timer, 24
setpgrp,9
setpriority,33
setregid, 9
setrlimit,34
setruid, 9
setsockopt,59
settimeofday,23
setting options for descriptors, 28
shutdown, 59
sigblock,19
signal types, 17
signals, 17 thru 20
sigpause, 19
sigsetmask, 19
sigstack,20
sigvec,18
socket, 56
socketpair,57
sockets, 55

binding, 56
connecting, 56
creating, 56
options, 59
receiving from, 57
sending to, 57

stat, 47
statfs,47
structured devices:, 63
swapon,37
symbolic links, 49
symlink,49
sync, 38
synchronous multiplexing of descriptors, 28

T
terminating a process, 8
time, 23
timers, 23 thru 24

interval, 24
trace process - ptrace, 67 thru 69
truncate, 50
truncating files, 50

-79-

U
unlink, 47
unmount,37
unstructured devices:, 63
user ID's, 8
utimes,48

wait, 8
wait3,8

w

waiting for a process, 8
write, 41
writev,42

Index Continued

Revision History

Revision Date Comments

A 15 February 1986 First Release of this manual in this
fonn. Extracted this manual from out of
the System Interface Manual to form a
stand-alone document.

Notes

Notes

Notes

Notes

Notes

Notes

Notes

